INTEGRATION

1

The diagram shows the curve with the equation $y=\left(x^{\frac{1}{2}}-2\right)^{2}$. The curve meets the y-axis at the point A and the x-axis at the point B.
a Find the coordinates of the points A and B.
b Find the area of the shaded region enclosed by the curve and the coordinate axes.
2 Evaluate

$$
\begin{equation*}
\int_{1}^{2} \frac{3 x^{3}+1}{2 x^{2}} \mathrm{~d} x \tag{5}
\end{equation*}
$$

The diagram shows the curve with equation $y=4^{x+1}$.
The point P on the curve has y-coordinate 32 .
a Find the x-coordinate of P.
The shaded region is bounded by the curve, the coordinate axes and the line through P parallel to the y-axis.
b Use the trapezium rule with 4 equally-spaced ordinates to estimate the area of the shaded region.

4

The diagram shows the curve $y=x^{2}-2 x$ and the line $y=x$. The curve crosses the x-axis at the origin, O, and at the point A. The line intersects the curve at O and at the point B.
a Find the coordinates of the points A and B.
b Find the area of the region enclosed by the curve and the x-axis.
c Show that the area of the region enclosed by the curve and the line $y=x$ is $\frac{9}{2}$.

5

The diagram shows the curve with equation $y=(1+x) \cos x, 0 \leq x \leq \frac{\pi}{2}$.
a Copy and complete the table below for points on the curve, giving the y values correct to 3 decimal places where appropriate.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
y				

b Use the trapezium rule with the values in your table to estimate the area of the region bounded by the curve and the coordinate axes.
c State, with a reason, whether your answer to part \mathbf{b} is an under-estimate or an over-estimate of the true area.

6 Given that

$$
\begin{equation*}
\int_{1}^{k}\left(3-\frac{4}{x^{2}}\right) \mathrm{d} x=6 \tag{7}
\end{equation*}
$$

and that $k>1$, find the value of the constant k.
7

The diagram shows the curve with the equation $y=x^{3}-3 x^{2}+5$. The curve is stationary at the point $P(0,5)$ and at the point Q.
a Find the coordinates of the point Q.
The straight line passing through the point P parallel to the x-axis intersects the curve again at the point R.
b Find the coordinates of the point R.
c Find the area of the shaded region enclosed by the curve and the straight line $P R$.
8 The finite region R is bounded by the curve $y=(2-x)^{3}$ and the coordinate axes.
a State the coordinates of the point where the curve crosses the x-axis.
b Use the trapezium rule with 4 intervals of equal width to estimate the area of R.
c Expand $(2-x)^{3}$ in ascending powers of x.
d Hence, using integration, find the percentage error in the estimate for the area of R found in part \mathbf{b}.

